REMÉDIATIONS POLYNÔMES 1

Attention, il peut y avoir des complexes.

Exercice 1 - En pratique!

Calculer le quotient et le reste de la division euclidienne de

1.
$$X^4 + 5X^3 + 12X^2 + 19X - 7$$
 par $X^2 + 3X - 1$;

2.
$$X^4 - 4X^3 - 9X^2 + 27X + 38 \text{ par } X^2 - X - 7$$
;

3.
$$X^5 - X^2 + 2$$
 par $X^2 + 1$.

Exercice 2 - Expression du reste

Soit $P \in \mathbb{K}[X]$, soit $a, b \in \mathbb{K}$ avec $a \neq b$.

- 1. Soit R le reste de la division euclidienne de P par (X-a)(X-b). Exprimer R en fonction de P(a) et de P(b).
- 2. Soit R le reste de la division euclidienne de P par $(X-a)^2$. Exprimer R en fonction de P(a) et de P'(a).

Exercice 3 -

Quel est le reste de la division euclidienne de $(X+1)^n - X^n - 1$ par

1.
$$X^2 - 3X + 2$$

1.
$$X^2 - 3X + 2$$
 2. $X^2 + X + 1$ **3.** $X^2 - 2X + 1$?

3.
$$X^2 - 2X + 1$$
?

Exercice 4 - Carrés

Soient a, b des réels, et $P(X) = X^4 + 2aX^3 + bX^2 + 2X + 1$. Pour quelles valeurs de a et b le polynôme P est-il le carré d'un polynôme de $\mathbb{R}[X]$?

Exercice 5 - A paramètres

Donner une condition nécessaire et suffisante sur $(\lambda, \mu) \in \mathbb{C}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 +$ $\lambda X^2 + \mu X + 2.$