Chapitre 7: La boucle TANT QUE.

Voici une deuxième technique pour effectuer des boucles, c'est-à-dire itérer un processus. Dans une boucle « for », le nombre d'itérations est connu à l'avance. Dans une boucle « tant que », on répète une suite d'instructions un nombre de fois qui nous est inconnu au moment d'effectuer la première itération.

I Exemple

Écrire le script suivant et le tester pour les valeurs suivantes de a : 3, 10, 100, -1.

```
a=input('entrez\ un\ seuil\ ')

u=1

while u<a\ then\ u=2*u

end

disp(u,'valeur\ de\ u:\ ')
```

Faire un tableau montrant l'évolution des variables u<a (booléen) et a. Décrire l'affichage en sortie, c'est-àdire le contenu de la variable u.

Rajouter quelques lignes comme ci-dessous, puis faire fonctionner à nouveau le programme pour les mêmes valeurs de a que précédemment. A quoi sert la variable k ?

```
a=input('entrez\ un\ seuil\ ')
u=1
k=0
while\ u < a\ then\ u=2*u,k=k+1
end
disp(u,'valeur\ de\ u\ :\ ')
disp(k,'valeur\ de\ k\ :\ ')
```

II Syntaxe de la boucle WHILE avec Scilab

L'instruction while condition then instruction(s); end permet de répéter la ou les instructions un certain nombre de fois (tant que la condition est vraie).

Remarques:

- Le « then » est facultatif, mais l'instruction apparaît ainsi dans le programme officiel ECS.
- La boucle peut ne pas tourner du tout si le test est faux dès le premier passage.
- Cette boucle sert surtout à afficher le plus petit entier tel que la condition est fausse, d'où l'importance de la notion de compteur.

Ex 1: Soit la suite définie par $U_0=1$ et pour tout entier n supérieur ou égal à 0 : $U_{n+1}=U_n^2+1$. On admet que cette suite diverge vers $+\infty$.

Ecrire un script qui demande à l'utilisateur un seuil A puis qui calcule et affiche le rang du premier terme de cette suite qui est strictement supérieur à A.

Ex 2 : Soit la suite définie par $U_0=1$ et pour tout entier n supérieur ou égal à 0 :

$$U_{n+1} = \frac{1}{2} \left(U_n + \frac{2}{U_n} \right)$$
. On admet que cette suite converge vers $\sqrt{2}$.

Écrire un script qui demande à l'utilisateur un seuil ε puis qui calcule et affiche le rang du premier terme de cette suite qui vérifie $|U_n - \sqrt{2}| \le \varepsilon$. Faire fonctionner le programme pour ε =0,01 puis ε =0,000 001. Noter les résultats pour comparer plus tard avec ceux du dernier exercice.

Ex 3: Soit $S_n = \sum_{k=1}^n \frac{1}{k^2}$ pour tout entier n supérieur ou égal à 1.

On admet que cette suite converge vers $\frac{\pi^2}{6}$. Calculer le plus petit entier n tel que $\left|S_n - \frac{\pi^2}{6}\right| \le 0.01$.

Ex 4: La suite dite « de Syracuse » est la suite (u_n) définie par : $u_0 = a$, a étant un entier naturel non nul entré par l'utilisateur, puis pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{u_n}{2}$ si u_n est pair et $u_{n+1} = 3u_n + 1$ si u_n est impair.

Une conjecture célèbre (non encore prouvée) dit que l'on finit toujours par obtenir 1. Écrire un programme pour qu'il affiche le plus petit entier n tel que $u_n=1$.

Rappel: n pair ssi n=2xpartie entière de n/2

Ex 5 : On a montré (feuille sur les suites) que les suites suivantes étaient adjacentes : $S_n = \sum_{k=0}^n \frac{1}{k!}$ et $T_n = S_n + \frac{1}{n \cdot n!}$ définies à partir de n=1. Si on note L leur limite commune, on a (voir toujours l'exercice) : $\left|L - \frac{S_n + T_n}{2}\right| \leq \frac{T_n - S_n}{2}$. Ecrire un script qui demande à l'utilisateur un réel ε puis qui calcule et affiche une valeur approchée de L à ε près (c'est-à-dire ε tel que $|L - \varepsilon| \leq \varepsilon$).

Ex 6: Résolution d'équation par dichotomie.

On veut résoudre l'équation f(x)=0. On sait que dans l'intervalle]a,b[, il existe une unique solution x_0 grâce au théorème de la limite monotone : f est strictement monotone et continue sur [a,b] et 0 est dans l'intervalle image f(]a,b[), autrement dit f(a)f(b)<0.

Alors
$$x_0$$
 est dans $\left[a, \frac{a+b}{2}\right]$ ou bien dans $\left[\frac{a+b}{2}, b\right[$

selon que $f\left(a\right)f\left(\frac{a+b}{2}\right)>0$ ou bien $f\left(a\right)f\left(\frac{a+b}{2}\right)\leq0$. On définit donc par récurrence les suites (a_n) et (b_n) par : $a_0=a$, $b_0=b$ et pour tout entier naturel n :

$$a_{n+1} = \begin{pmatrix} a_n & si & f(a_n) f\left(\frac{a_n + b_n}{2}\right) \le 0 \\ \frac{a_n + b_n}{2} & si & f(a_n) f\left(\frac{a_n + b_n}{2}\right) > 0 \end{pmatrix} \text{ et } b_{n+1} = \begin{pmatrix} \frac{a_n + b_n}{2} & si & f(a_n) f\left(\frac{a_n + b_n}{2}\right) \le 0 \\ b_n & si & f(a_n) f\left(\frac{a_n + b_n}{2}\right) > 0 \end{pmatrix}$$

1) On prend f(x)=x-1, a=0 et b=3. Calculer les quatre premiers termes des suites (a_n) et (b_n) définies cidessus.

Retour au cas général:

2) Exprimer a_{n+1} - b_{n+1} et fonction de a_n - b_n . En déduire que la suite $(a_n$ - $b_n)$ converge vers 0.

Comme la suite (a_n) est croissante et (b_n) décroissante par construction, on a donc une couple de suites adjacentes.

3) Supposons f strictement croissante sur [a,b]. On a alors pour tout entier n : $f(a_n) \le 0$ et $f(b_n) \ge 0$. En déduire que la limite commune de (a_n) et (b_n) est (a_n) et $(a_n$

Le principe de résolution d'une équation par dichotomie est de calculer les termes des suites (a_n) et (b_n) jusqu'à s'être suffisamment approché de leur limite.

On a $0 \le x_0 - a_n \le b_n - a_n$ donc a_n est une approximation de x_0 par défaut à la précision $\varepsilon = b_n - a_n$.

Mise en œuvre sur des exemples :

- 4) On considère l'équation $\ln(x) + x = 0$. Montrer qu'il existe une unique solution dans $\left[\frac{1}{e};1\right[$.
- 5) Écrire un script permettant de trouver et afficher une valeur approchée de la solution à 0,001 près.
- 6) Modifier le script pour qu'il affiche aussi le nombre d'itérations effectuées.
- 7) Faire fonctionner le principe de dichotomie pour approcher le réel $\sqrt{2}$ avec l'équation $x^2-2=0$ sur]1; 2[à $\varepsilon=0,01$ puis $\varepsilon=0,000$ 001 près et noter le nombre d'itérations. Comparer les résultats avec ceux obtenus dans l'exercice 2.