Remédiations nombres réels

Exercice 1 - Pour réviser...

Encadrer x + y, x - y, xy et x/y sachant que $x \in [3, 6]$ et $y \in [-4, -2]$.

Exercice 2 - Somme, produit, carré

Soit a, b, c trois nombres réels.

- 1. Démontrer que $ab \leq \frac{a^2+b^2}{2}$.
- 2. Démontrer que $ab + bc + ac \le a^2 + b^2 + c^2$.
- 3. Démontrer que $3ab + 3bc + 3ac \le (a+b+c)^2$.

Exercice 3 - Une équation avec des racines carrées

Déterminer les réels x tels que $\sqrt{2-x} = x$.

Exercice 4 - Maximum et valeur absolue

Soient x et y deux nombres réels. Démontrer que

$$\max(x, y) = \frac{1}{2}(x + y + |x - y|)$$

$$\min(x, y) = \frac{1}{2}(x + y - |x - y|).$$

EXERCICE 5 - Équation avec des valeurs absolues

On cherche à résoudre l'équation

$$|2x - 4| = |x + 3|.$$

- 1. On suppose $x \ge 2$. Simplifier |2x 4| et |x + 3|. En déduire les solutions de l'équation dans l'intervalle $[2, +\infty[$.
- 2. On suppose que $x \in [-3, 2[$. Simplifier |2x 4| et |x + 3|. En déduire les solutions de l'équation dans cet intervalle.
- 3. On suppose que x < -3. Simplifier |2x-4| et |x+3|. En déduire les solutions de l'équation dans cet intervalle.
- 4. Conclure.

Exercice 6 - Une inégalité

Démontrer que, pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 - x + 1$.

Exercice 7 - Inégalité avec un maximum et des valeurs absolues

Soit x, y deux réels non nuls. Démontrer que

$$\max(|x|,|y|)\left|\frac{x}{|x|} - \frac{y}{|y|}\right| \le 2|x - y|.$$

Exercice 8 - Partie entière du successeur

Démontrer que, pour tout $x \in \mathbb{R}$, $\lfloor x+1 \rfloor = \lfloor x \rfloor + 1$.

Exercice 9 - Produit et division

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Démontrer que

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$$

Exercice 10 - Somme et somme des carrés

Soit $n \in \mathbb{N}^*$.

- 1. Soit a_1, \ldots, a_n des réels. Exprimer $\sum_{k=1}^n (1-a_k)^2$ en fonction de $\sum_{k=1}^n a_k$ et de $\sum_{k=1}^n a_k^2$.
- 2. On note

$$E_n = \left\{ x \in \mathbb{R}; \ \exists (a_k)_{k \in \{1, \dots, n\}} \in \mathbb{R}^n; \ x = \sum_{k=1}^n a_k = \sum_{k=1}^n a_k^2 \right\}.$$

 E_n est-il majoré? E_n est-il minoré? Possède-t-il un plus grand élément? Un plus petit élément?