3

Produit scalaire et déterminant

Rappel 3.1. Tout vecteur \overrightarrow{AB} est défini par :

- son : de *A* vers *B*.
- sa ______ : celle de (*AB*).
- sa _____, notée égale à la longueur du segment [AB].

<u>Coordonnées</u>: soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan. On a :

$$\overrightarrow{AB} = \begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$$

Norme : soit $\overrightarrow{u}(x;y)$ dans un repère **orthonormé**. On a :

$$\|\overrightarrow{u}\| = \dots$$

I Produit scalaire et orthogonalité

I.1 Produit scalaire

a) Définition et propriétés

Définition 3.1 – Produit scalaire

Soient \vec{u} et \vec{v} deux vecteurs du plan.

On appelle ______ de \vec{u} et \vec{v} , noté, le réel :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \dots$$

Remarque 3.1. En particulier, $\vec{u} \cdot \vec{u} = \dots$, car $\cos(\vec{u}, \vec{u}) = \cos(0) = 1$.

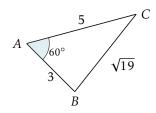
Propriété 3.1

Soit θ l'angle formé par deux vecteurs \vec{u} et \vec{v} .

$$\theta = \dots$$

Exemple 3.1.

1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.



2. Sachant que $\overrightarrow{BA} \cdot \overrightarrow{BC} = \frac{3}{2}$, déterminer une valeur approchée de \widehat{ABC} à 10^{-2} près.

Propriété 3.2 – Symétrie et bilinéarité du produit scalaire

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} et tout $k \in \mathbb{R}$, on a :

- $\vec{u} \cdot \vec{v} = \dots$
- $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \dots$
- \overrightarrow{u} $(k\overrightarrow{v}) = \dots$

Remarque 3.2. On retrouve les mêmes propriétés que celles que l'on connaît pour le produit de nombre réels.

Remarque 3.3. Les identités remarquables restent donc vraies pour le produit scalaire.

Par exemple : $(\vec{u} + \vec{v})^2 = \dots = \dots$

Exemple 3.2. Simplifier les expressions suivantes :

- 1. $\left(\frac{1}{2}\vec{u}\right) \cdot (6\vec{u})$
- 2. $\overrightarrow{u} \cdot (2\overrightarrow{u} \overrightarrow{v})$
- 3. $\overrightarrow{AB} \cdot \overrightarrow{BA}$

b) Expression analytique du produit scalaire

Théorème 3.1 – Expression analytique du produit scalaire

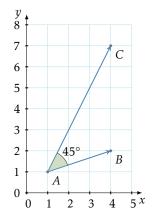
Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs dans un repère ______. On a :

$$\vec{u} \cdot \vec{v} = \dots$$

Exemple 3.3.

Soient A, B et C trois points représentés sur la figure ci-contre.

1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ en utilisant la définition du produit scalaire.



2. Retrouver ce résultat avec l'expression analytique du produit scalaire.

I.2 Orthogonalité

Définition 3.2 – Vecteurs orthogonaux

Deux vecteurs sont dits _____ si l'un des deux est nul ou si _____

Propriété 3.3 – Orthogonalité et produit scalaire

Deux vecteurs sont _____ si et seulement si _____

Exemple 3.4. Soient A(1;2), B(3;-1) et $C(6;\frac{16}{3})$ dans un repère orthonormé. \angle Démontrer que ABC est rectangle en A.

I.3 Projection orthogonale

Propriété 3.4

Soient \vec{u} et \vec{v} deux vecteurs du plan, et soit \vec{p} le projeté orthogonal de \vec{u} sur \vec{v} . Alors :

Exemple 3.5. Soient A(1;1), B(3;2) et C(2;1) dans un repère orthonormé.

Soit H le projeté orthogonal de C sur \overrightarrow{AB} .

1. Déterminer les coordonnées de \overrightarrow{AH} .

2. En déduire les coordonnées de H.

3. En déduire la longueur de la hauteur issue de *C*, puis l'aire du triangle *ABC*.

Déterminant et colinéarité

II.1 Déterminant

Définition 3.3

de \vec{u} et \vec{v} , noté, est le nombre défini par :

Propriété 3.5

Soit \mathcal{A} l'aire du parallélogramme engendré par \overrightarrow{u} et \overrightarrow{v} .

$$A = \dots$$

Exemple 3.6. Soient A(-2;1), B(0;4), C(1;-1) et D(-1;-4). Déterminer l'aire du parallélogramme ABCD.

Corollaire 3.6

Soit ABC un triangle et A son aire.

$$A = \dots$$

Démonstration -

 $|\det(\overrightarrow{AB}; \overrightarrow{AC})|$ est égal à l'aire du parallélogramme engendré par \overrightarrow{AB} et \overrightarrow{AC} . La diagonale [BC] coupe ce parallélogramme en deux parties égales dont l'aire est celle du triangle ABC.

Exemple 3.7. Soient A(6;1), B(1;4) et C(2;2). Déterminer l'aire du triangle ABC.

II.2 Colinéarité

Définition 3.4 – Vecteurs colinéaires

Deux vecteur \vec{u} et \vec{v} sont dits _____ si et seulement si il existe un nombre réel non nul *k* tel que

Remarque 3.4. Deux vecteurs sont donc colinéaires si et seulement si ils ont la même direction.

Exemple 3.8. Soient les points A(-2;0), B(-1;2), C(3;1) et D(1;-3).

Démontrer que \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Propriété 3.7 – Déterminant et colinéarité

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont ______ si et seulement si _____

Exemple 3.9. Soient $\vec{u} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -9 \\ -12 \end{pmatrix}$.

1. Calculer le déterminant de \vec{u} et \vec{v} .

2. Que peut-on en déduire?

3. Vérifier en indiquant le réel k tel que $\vec{v} = k\vec{u}$.