Exercices, niveau 2 : séries numériques

Glossaire: ⇒ désigne les exercices à faire chez soi, à correction rapide, → désigne les exercices à faire chez soi, mais dont nous ferons la correction complète, * désigne les exercices de niveau 2.

Exercice $1 \Rightarrow$

Dans chacun des cas suivants, donner une expression en fonction de n de la somme partielle de la série de terme général u_n (les suites sont toutes définies à partir de n=0), en déduire si la série converge puis donner sa somme en cas de convergence.

1.
$$u_n = n$$

2.
$$u_n = \frac{11}{4^{n+1}}$$

3.
$$u_n = \frac{(-1)^n}{3^{2n+1}}$$

1.
$$u_n = n$$
 2. $u_n = \frac{11}{4^{n+1}}$ 3. $u_n = \frac{(-1)^n}{3^{2n+1}}$ 4. $u_n = \sqrt{n+1} - \sqrt{n}$

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $\forall n\in\mathbb{N}^*, u_n=\ln\left(\frac{(n+1)^2}{n(n+2)}\right)$.

- 1. Simplifier l'expression $S_n = \sum_{k=1}^n u_k$.
- 2. En déduire la convergence et la somme de la série $\sum_{n>1} u_n$.

Exercice 3 **→**

Etudier la nature des séries de terme général u_n lorsque :

$$1. \ u_n = \frac{1}{\sqrt{n}}$$

2.
$$u_n = \frac{(-1)^n}{t^n}$$
 (discuter selon les valeurs du param'etre réel t)

$$3. u_n = 2\sqrt{n} \tan\left(\frac{1}{n^2}\right)$$

3.
$$u_n = 2\sqrt{n}\tan\left(\frac{1}{n^2}\right)$$
 4. $u_n = \ln\left(1 - \frac{1}{n+2}\right)$
5. $u_n = \frac{(\sqrt{n} + \ln(n))^2}{n^2 + 3n - 1}$ 6. $u_n = \frac{1}{n\sqrt[n]{n}}$

5.
$$u_n = \frac{(\sqrt{n} + \ln(n))^2}{n^2 + 3n - 1}$$

$$6. \ u_n = \frac{1}{n\sqrt[n]{n}}$$

Exercice 4

On considère la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$. On note pour tout $n \in \mathbb{N}^*$, $H_n = \sum_{n=1}^{\infty} \frac{1}{k}$.

- 1. Quelle est la nature de la série harmonique?
- 2. On introduit la suite auxiliaire ν définie par $\forall n \in \mathbb{N}^*, \nu_n = H_n \ln(n)$.
 - (a) Démontrer que $\forall x \in \mathbb{R}_+^*$, $\frac{1}{1+x} \le \ln(x+1) \ln(x) \le \frac{1}{x}$. En déduire que $\forall n \geq 2, \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \leq \ln(n) \leq 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$.

- (b) En déduire que la suite (v_n) est monotone et qu'elle converge. On note $\gamma = \lim_{n \to +\infty} v_n$. γ est appelée la constante d'Euler.
- (c) En déduire finalement que $H_n = \ln(n) + \gamma + o(1)$.

Exercice 5 *

Ecrire sous forme d'un quotient d'entiers naturels les nombres suivants : 0,9999...; 1,11111...; 0,14141414...

Exercice 6

Soit $v_n = (-1)^n u_n$, où $(u_n)_{n \ge 0}$ est une suite réelle positive, décroissante et de limite nulle.

- 1. On considère S_n la somme partielle (de rang n) de la série $\sum v_n$. Montrer que (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Que peut-on en déduire pour la série $\sum v_n$?
- 3. (a) En utilisant ce qui précède, déterminer la nature de la série $\sum \frac{(-1)^n}{n+1}$.
 - (b) Cette série est-elle absolument convergente?
 - (c) Notons α la somme de cette série. Montrer que $\forall n \in \mathbb{N}, 0 \leq S_{2n} \alpha \leq \frac{1}{2n+1}$. En déduire un script Scilab permettant de calculer et afficher une valeur approchée de α à 0.001 près.

Exercice 7 **→**

Démontrer la convergence et calculer la somme des séries de terme général u_n , lorsque :

1.
$$u_n = \frac{5(-1)^n}{6^n}$$

2.
$$u_n = \frac{n+1}{n!}$$

1.
$$u_n = \frac{5(-1)^n}{6^n}$$
 2. $u_n = \frac{n+1}{n!}$ 3. $u_n = \frac{n-1}{3^{n+1}}$ (sommer à partir de $n = 0$)

Exercice 8 **→**

Étudier la nature des séries de terme général u_n , lorsque :

1. $u_n = e^{-n}$ 2. $u_n = \frac{n-1}{3^n-1}$ 3. $u_n = \frac{(-1)^n}{n^2+n+1}$ 4. $u_n = \frac{(\ln(n))^{20}}{\sqrt{n}}$ 5. $u_n = \frac{\cos(\pi\sqrt{n})}{3n^2+1}$ 6. $u_n = \ln\left(\frac{n^2+1}{n^2}\right)$ 7. $u_n = (-1)^n t^{2n}$.

1.
$$u_n = e^{-n}$$

$$2. \ u_n = \frac{n-1}{3^n - 1}$$

3.
$$u_n = \frac{(-1)^n}{n^2 + n + 1}$$

4.
$$u_n = \frac{(\ln(n))^{20}}{\sqrt{n}}$$

$$5. u_n = \frac{\cos(\pi\sqrt{n})}{3n^2 + 1}$$

$$6. \ u_n = \ln\left(\frac{n^2 + 1}{n^2}\right)$$

7.
$$u_n = (-1)^n t^{2n}$$

(pour 7. discuter selon les valeurs du paramètre réel t)

Exercice 9

Soit a un réel tel que $a \in]0,1[$. Soit $(u_n)_{n \in \mathbb{N}}$ définie par : $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$.

2

- 1. Montrer que la suite (u_n) converge et préciser sa limite.
- 2. Montrer que la série $\sum u_n^2$ converge, et préciser la valeur de $\sum_{n=0}^{+\infty} u_n^2$.
- 3. Montrer que la série $\sum \ln(\frac{u_{n+1}}{u_n})$ diverge.
- 4. En déduire la nature de la série $\sum u_n$.

Exercice 10

Utilisation du critère de négligeabilité : comparaison avec une série de Riemann.

- 1. Donner la nature de la série de terme général $u_n = \frac{1}{n\sqrt{n}}$.
- 2. Montrer que la série $\sum \frac{\ln(n)}{n\sqrt{n}}$ est convergente.

(indication: trouver $\alpha > 1$ tel que $\frac{\ln(n)}{n\sqrt{n}} = o\left(\frac{1}{n^{\alpha}}\right)$

- 3. En s'inspirant de la méthode vue en 2), montrer que la série de terme général $u_n = \exp(-\sqrt{n})$ converge. Deux dernières questions facultatives :
- 4. Montrer, toujours dans le même registre, que $\sum \frac{(\ln n)^{1/2}}{n^{\frac{5}{4}}}$ converge.
- 5. Montrer avec le critère de comparaison des séries à termes positifs que $\sum \frac{1}{\sqrt{n}(\ln n)^7}$ diverge.

Exercice 11 **→**

Démontrer la convergence et calculer la somme des séries suivantes :

1.
$$\sum_{n>2} \frac{n+2}{3^{n-1}}$$

1.
$$\sum_{n\geq 2} \frac{n+2}{3^{n-1}}$$
 2. $\sum_{n\geq 1} \frac{n^2-4}{5^n}$ 3. $\sum_{n\geq 5} \frac{(-1)^n n}{(n-1)!}$

$$3. \sum_{n \ge 5} \frac{(-1)^n n}{(n-1)!}$$

Défi 1 ∗

Discuter en fonction de $\alpha, \beta \in \mathbb{R}$ de la nature de la série :

1.
$$\sum_{n \ge 1} (\frac{1}{1+2+3+\ldots+n})^{\alpha}$$

$$2. \sum_{n\geqslant 1} (\sqrt{n+7} - \sqrt{n})^{\alpha}$$

$$3. \sum_{n\geqslant 1} \frac{n^{\alpha}}{n^2 + n^{\beta}}$$

Défi 2 ∗

On définit les suites u et v pour tout $n \in \mathbb{N} \setminus \{0; 1\}$ par $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

- 1. (a) On pose $S_n = \sum_{k=1}^n u_k$. Justifier que les suites $(S_{2n})_n$ et $(S_{2n+1})_n$ sont adjacentes.
 - (b) En déduire la convergence de la série $\sum u_n$
- 2. Vérifier les équivalents $u_n \sim v_n$ et $u_n v_n \sim \frac{1}{n}$.
- 3. Prouver que la série $\sum v_n$ est divergente. (on aura trouvé 2 suites équivalentes dont les séries ne sont pas de même nature, d'où l'importance de la positivité dans les hypothèses du théorème associé).

3

Défi 3 ₩

On pose $P_0 = 1$, $P_1 = X$, $P_2 = X(X - 1)$, $P_3 = X(X - 1)(X - 2)$, $P_4 = X(X - 1)(X - 2)(X - 3)$.

- 1. Soit $P \in \mathbb{R}_4[X]$, justifier l'existence de $\alpha_0, ... \alpha_4$ tels que $P = \sum_{i=0}^4 \alpha_i P_i$
- 2. (a) Vérifier que pour tout i, $\sum_{n=0}^{+\infty} \frac{P_i(n)}{n!} = e$
 - (b) Calculer en fonction de $\alpha_0,...\alpha_4$, la somme $\sum_{n=0}^{+\infty} \frac{P(n)}{n!}$
- 3. Application : donner la valeur de la somme $\sum_{n=0}^{+\infty} \frac{n^3 n^2}{n!}$.