Exercices, niveau 2 : Polynômes : Théorèmes fondamentaux

Glossaire: ⇒ désigne les exercices à faire chez soi, à correction rapide, ⇒ désigne les exercices à faire chez soi, mais dont nous ferons la correction complète, * désigne les exercices de niveau 2.

Exercice 1 ⇒

- 1. Appliquer la formule de Taylor au polynôme $P = X^3 + 3X^2 2$ en 1. En déduire le reste et le quotient de la division euclidienne de P par $(X 1)^2$.
- 2. Soit $n \in \mathbb{N}$. En appliquant la formule de Taylor, déterminer le reste de la division euclidienne de $X^n + 2X 2 \in \mathbb{R}[X]$ par $(X-2)^2 \in \mathbb{R}[X]$.

Exercice 2

Soit $P \in \mathbb{R}[X]$ et on pose Q = P(X+1) + P(X) (par exemple, si $P = X^2 - 3X$, on a $Q = (X+1)^2 - 3(X+1) + X^2 - 3X$).

- 1. On suppose que P est de degré n avec $n \in \mathbb{N}$. Quel est le degré de Q?
- 2. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que P(X+1) + P(X) = 0.

Exercice 3 ⇒

Calculer la matrice du vecteur $P = X^3 - 3X^2 + 5X - 2$ de $\mathbb{R}_3[X]$ dans la base $(1, (X+2), (X+2)^2, (X+2)^3)$.

Exercice 4

Montrer, sans développer, que le polynôme suivant est nul, si a, b, c sont distincts :

$$P = (X - a)^{2}(b - c) + (X - b)^{2}(c - a) + (X - c)^{2}(a - b) + (a - b)(c - a)(b - c)$$

Exercice 5 *

Soit $P \in \mathbb{R}[X]$. Montrer que : $P(X+1) = P(X) \Leftrightarrow P$ est un polynôme constant.

Exercice 6 ⇒

Déterminer l'ordre de la racine α du polynôme P lorsque :

1.
$$\alpha = -1$$
 et $P = X^{99} + 2X^{40} - 3X^{2} + 2$ 2. $\alpha = 1$ et $P = X^{n+1} - (n+1)X + n$

Exercice 7 **⇒**

- 1. Soit $P = X^4 + 2X^2 + 1$. Factoriser P dans $\mathbb{R}[X]$.
- 2. Factoriser dans $\mathbb{R}[X]$ les polynômes : 1. $P = X^3 + 2X^2 1$ 2. $Q = 2X^4 + 32$. (réflechir au factorisation possible)

Exercice 8 ⇒

- 1. Soit *n* un entier supérieur ou égal à 1. Montrer que $P = X^n 2X^{n-1} X + 2$ est divisible par (X 1)(X 2).
- 2. Montrer que $P = X^8 2X^2 3$ est divisible par $X^2 + 1$.
- 3. Soit *n* un entier supérieur ou égal à 1. Montrer que $P = X^{n+1} (n+1)X + n$ est divisible par $(X-1)^2$.

Exercice 9

On considère la suite (T_n) de polynômes réels, définie par :

$$T_0 = 1, T_1 = X \text{ et } \forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n.$$

- 1. (a) ightharpoonup Expliciter T_2 , T_3 , T_4 .
 - (b) ightharpoonup Déterminer le degré de T_n , son coefficient dominant.
 - (c) ightharpoonup Montrer que $\forall n \in \mathbb{N}$, $T_n(-X) = (-1)^n T_n(X)$. En déduire la parité de T_n .
- 2. (a) Soit $\theta \in \mathbb{R}$. Excrire $\cos(2\theta)$ puis $\cos(3\theta)$ en fonction de $\cos(\theta)$.
 - (b) Etablir par récurrence (en utilisant des formules de trigonométrie) que $\forall n \in \mathbb{N}, \forall \theta \in \mathbb{R}, T_n(\cos(\theta)) = \cos(n\theta).$
 - (c) En déduire $T_n(1)$.

Exercice 10

Soit
$$n \in \mathbb{N}$$
 et $P = \sum_{k=0}^{n} \frac{1}{k!} X^k$.

- 1. Donner une relation entre P'_{n+1} et P_n .
- 2. Montrer que P_n n'admet pas de racine multiple.
- 3. Montrer que P_{2n} n'admet aucune racine réelle et P_{2n+1} admet une unique racine réelle.

Exercice 11

Polynômes de Lagrange (mathématicien-physicien français, 1736-1813) :

Soit n un entier supérieur ou égal à 2. Soit $x_1 < x_2 < \cdots < x_n$ des réels. On définit n polynômes Q_1, Q_2, \cdots, Q_n par :

$$\forall j \in \{1, \dots, n\}, \ Q_j = \prod_{1 \le p \le n \text{ et } p \ne j} \frac{X - x_p}{x_j - x_p}$$

Par exemple, lorsque n = 3, on a :

$$Q_1 = \frac{(X - x_2)(X - x_3)}{(x_1 - x_2)(x_1 - x_3)} \; ; \; Q_2 = \frac{(X - x_1)(X - x_3)}{(x_2 - x_1)(x_2 - x_3)} \; ; \; Q_3 = \frac{(X - x_1)(X - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

- 1. Déterminer, pour tout $j \in \{1, \dots, n\}$, le degré de Q_j .
- 2. Déterminer, pour tout $j \in \{1, \dots, n\}$, la valeur de $Q_j(x_k)$ pour $k \neq j$, puis la valeur de $Q_j(x_j)$.
- 3. Soit y_1, y_2, \dots, y_n des réels.
 - (a) Soit P le polynôme à coefficients réels :

$$P = \sum_{j=1}^{n} y_j Q_j$$

Calculer, pour tout $k \in \{1, \dots, n\}$, la valeur de $P(x_k)$.

(b) Montrer que, si P et Q sont deux polynômes à coefficients réels, tous deux de degré inférieur ou égal à n-1, vérifiant :

$$\forall k \in \{1, \dots, n\}, P(x_k) = Q(x_k)$$

alors P = Q (indication : considérer le polynôme P - Q)

(c) Déduire des questions précédentes qu'il existe un unique polynôme $P \in \mathbb{R}[X]$, de degré inférieur ou égal à n-1, tel que

$$\forall k \in \{1, \cdots, n\} , P(x_k) = y_k$$

- 4. Exemple : on prend ici n = 3, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$.
 - (a) Expliciter les polynômes Q_1 , Q_2 et Q_3 .
 - (b) Déterminer le polynôme P de degré au plus 2 tel que P(0)=3 , P(1)=3 et P(2)=1

Défi ∗

Montrer que le polynôme $P = X^3 + pX + q$ admet une racine multiple si et seulement si $4p^3 + 27q^2 = 0$