Kholles 25/01/2022

1 Exercices

- 1. Echauffement : on considère $E = \mathbb{R}[X]$. Montrer que la fonction suivante définie un produit scalaire : pour tout $f,g \in E, h(f,g) = \int_0^1 f(t)g(t)dt$. Donner une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire. Enfin, montrer que pour tout $P \in R[X], |\int_0^1 P(t)t \, dt| \leq \sqrt{\int_0 P(t)^2 \, dt \int_0^1 t^2 \, dt}$
- 2. HEC 2019:

Dans l'exercice $(E, \langle \mid \rangle)$ désigne un espace euclidien de dimension $n \in \mathbb{N}^*$ et $B = (e_1, \dots, e_n)$ une base de E.

- Question de cours : énoncer le théorème de réduction des endomorphismes symétriques d'un espace euclidien.
- 2. Soit f l'application de E dans E telle que pour tout x de E, $f(x) = \sum_{k=1}^{n} \langle e_k | x \rangle e_k$.
 - a) Montrer que f est un endomorphisme symétrique de E.
 - b) Montrer que toutes les valeurs propres de f sont strictement positives et en déduire que f est bijectif.
- 3. Soit p un entier naturel non nul et x_1, \ldots, x_p des nombres réels deux à deux distincts.

Montrer que l'application θ de $\mathbb{R}_{p-1}[X]$ dans \mathbb{R}^p définie par

$$\forall P \in \mathbb{R}_{p-1}[X], \quad \theta(P) = (P(x_1), \dots, P(x_p))$$

est bijective.

- 4. a) Calculer, pour j, k entiers compris entre 1 et n, le produit scalaire $\langle e_k | f^{-1}(e_j) \rangle$.
 - b) Justifier l'existence d'un polynôme P tel que g = P(f) vérifie $g \circ g = f^{-1}$.
 - c) Pour un tel endomorphisme g, montrer que $(g(e_1), \ldots, g(e_n))$ est une base orthonormée de E.
- 3. (Bonus)
 - (a) Montrer que pour tout entier naturel non nul *n*,

$$\sum_{k=1}^{n} k\sqrt{k} \leqslant \frac{n(n+1)\sqrt{2n+1}}{2\sqrt{3}}$$

(b) Montrer que pour $n \neq 0$ et $x_1, ..., x_n > 0$:

$$\left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \left(\sum_{k=1}^{n} x_k\right) \geqslant n^2$$

(c) En construisant le bon produit scalaire, déterminer le minimum de l'expression $\int_0^{+\infty} e^{-t} (t^3 - at^2 - bt - c)^2 dt$.

1