Kholles 14/01/2022

1 Exercices

1. Résoudre sur \mathbb{R} :

$$(e^x - 1)y' + e^x y = 1$$

2. Résoudre,

$$y'' + y = tan(t)$$

- 3. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Calculer e^A sans la diagonaliser mais en trouvant son polynôme minimal.
- 4. Résoudre le système différenciel suivant : x' = 2x y + 2z et y' = 10x 5y + 7z et z' = 4x 2y + 2z
- 5. Bonus : On considère l'équation différentielle.

$$(E): y'' + cos^2(t)y = 0$$

- (a) Justifier l'existence d'une solution u de (E) telle que u(0) = 1 et u'(0) = 0.
- (b) Démontrer l'existence de deux réels α, β vérifiant $\alpha < 0 < \beta, u'(\alpha) > 0$ et $u'(\beta) < 0$. En déduire que u possède au moins un séro dans \mathbb{R}_+^* et \mathbb{R}_+^* .
- (c) Justifier l'existence de réels $\gamma = max\{t < 0 | u(t) = 0\}$ et $\delta = \{t > 0 | ut) = 0\}$.
- (d) Soit v une solution de (E) linéairement indépendante de u. En étudiant les variations de W = uv' u'v, montrer que v possède un zéro dans $]\delta, \gamma[$.
- (e) Soit w une solution non nulle de (E), démontrer que w admet une infinité de zéros. On pourra introduire pour $n \in \mathbb{N}$ la fonction

$$w_n: \mathbb{R} \to \mathbb{R}, t \mapsto w(t - n\pi)$$