Kholles 17/01/2022

1 Questions de cours

Énoncer et démontrer le line entre matrice de passage et matrice orthogonale.

2 Exercices

1. Montrer que les endomorphismes de \mathbb{R}^3 muni de sa structure euclidienne orienté canonique, dont les matrices dans la base canonique sont données ci-dessous sont des endomorphismes orthogonaux, puis les reconnaître géométriquement :

$$A = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix} \qquad B = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}$$

- 2. Pour $(a,b) \in \mathbb{R}^2$, on pose $I(a,b) = \int_0^{\pi} (a\sin(t) + b\cos(t) t)^2 dt$. Pour quelle valeur du couple (a,b) réalise t-on la plus petit valeur possible de I(a,b)?
- 3. On considère \mathbb{R}^n muni de sa structure euclidienne canonique, et $(e_1, e_2, ..., e_n)$ une base orthogonale de \mathbb{R}^n .
 - (a) Montrer qu'il existe un vecteur u de \mathbb{R}^n non nul tel que les projections orthogonales de $e_1, ..., e_n$ sur Vect(u) aient la même norme.
 - (b) Montrer que cette norme commune est indépendante du choix du vecteur u er l'exprimer en fonction de $||e_1||, ||e_2||, \dots, ||e_n||$.
- 4. (Inégalité de Ptolémée) Soit E un espace euclidien et $\|.\|$ la norme associée. Pour tout $x \in E \setminus \{0\}$, on pose $f(x) = \frac{x}{\|x\|^2}$.
 - (a) Montrer que pour $x, y \in E \setminus \{0\}$, on a $||f(x) f(y)|| = \frac{||x y||}{||x|| \times ||y||}$.
 - (b) Soient $a, b, c, d \in E$, montrer que

$$\|a-c\|\times\|b-d\|\leq\|a-b\|\times\|c-d\|+\|b-c\|\times\|a-d\|$$

- 5. (BONUS) Soient $m, n \in \mathbb{N}^*$. On identifie les vecteurs de \mathbb{R}^n (resp. \mathbb{R}^m) aux matrices colonnes associées. On munit \mathbb{R}^m (resp. \mathbb{R}^n) du produit scalaire $\langle X, Y \rangle =^t XY$ et on note $\|.\|$ la norme associée aussi bien dans \mathbb{R}^m que dans \mathbb{R}^n . On se donne $A \in M_{m,n}(\mathbb{R})$ et $B \in \mathbb{R}^m$. On pose $E = \{\|AX B\|^2, X \in \mathbb{R}^n\}$ et K = inf(E).
 - (a) Justifier l'existence de K.
 - (b) On considère le système linéaire (S): AX = B. On appelle pseudo-solution de S tout élément Y de \mathbb{R}^n tel que $\|AY B\|^2 = K$. Montrer que si (S) admet une solution, les pseudo-solutions de (S) sont les solutions de (S).
 - (c) On associe à (S) le système (S'): ${}^tAAX = {}^tAB$. Montrer qu'un élément Y de \mathbb{R}^n est pseudo solution de (S) si et seulement si il est solution de (S').(indice : regarder A(X-Y)+(AY-B)).

1

- (d) Montrer que $rg({}^{t}AA) = rg(A)$
- (e) Montrer que si rg(A) = n alors (S) admet une unique pseudo-solution.