Défi pour la kholle MP sur les séries

Partie II. Séries harmoniques «lacunaires»

Dans cette partie, on étudic des séries numériques obtenues à partir de la série harmonique divergente $\sum_{n\geqslant 1}\frac{1}{n}$ par effacement de certains de ses termes.

Pour toute partie $\mathcal G$ de $\mathbf N^*$, on note $\mathbf 1_{\mathcal G}$ la fonction indicatrice de $\mathcal G$, c'est-à-dire la fonction définie sur $\mathbf N^*$ à

valeurs dans
$$\{0,1\}$$
 telle que : $\forall k \in \mathbf{N}^*$, $\mathbf{1}_{\mathcal{G}}(k) = \left\{ egin{matrix} 1 & \text{si } k \in \mathcal{G} \\ 0 & \text{sinon} \end{array} \right.$

Pour tout entier
$$n$$
 supérieur ou égal à 1 , on pose : $\forall \mathcal{G} \subset \mathbf{N}^*$, $h_n(\mathcal{G}) = \sum_{k=1}^n \frac{\mathbf{1}_{\mathcal{G}}(k)}{k}$.

Dans la question 5, on étudie deux cas de convergence et la question 6 est consacrée à un cas de divergence.

- 5. On pose : $\mathcal{D} = \{n^2 ; n \in \mathbb{N}^*\}$ et $\mathcal{T} = \{n^3 ; n \in \mathbb{N}^*\}$.
 - a) Exprimer $h_n(\mathcal{D})$ à l'aide d'une somme partielle de la série de Riemann $\sum_{n\geq 1} \frac{1}{n^2}$.
 - b) En déduire la convergence de la suite $(h_n(\mathcal{D}))_{n \in \mathbb{N}^*}$ et calculer la somme $\sum_{n=1}^{+\infty} \frac{1_{\mathcal{D}}(n)}{n}$.
 - c) Justifier que D∩T est l'ensemble des entiers m pour lesquels m^{1/6} ∈ N*.
 Pour traiter cette question, on admet que la racine carrée d'un entier naturel qui n'appartient pas à D est un nombre irrationnel, c'est-à-dire, un nombre qui ne peut pas s'écrire comme le quotient de deux entiers.
 - d) Montrer que la suite $(h_n(\mathcal{D} \cup \mathcal{T}))_{n \in \mathbb{N}^*}$ est convergente et exprimer la somme $\sum_{n=1}^{+\infty} \frac{\mathbf{1}_{\mathcal{D} \cup \mathcal{T}}(n)}{n}$ à l'aide de certaines valeurs de la fonction ζ .
- 6. On note \mathcal{I} l'ensemble des entiers naturels impairs : $\mathcal{I} = \{2n-1; n \in \mathbb{N}^*\}$

Pour tout
$$n \in \mathbb{N}^*$$
, on pose : $u_n = \int_n^{n+1} \left(\frac{1}{2n-1} - \frac{1}{2t-1} \right) dt$.

- a) Pour tout $n \in \mathbb{N}^*$, établir l'encadrement : $0 \le u_n \le \frac{2}{(2n-1)^2}$
- b) Montrer que pour tout $n \in \mathbf{N}^*$, on a : $h_n(\mathcal{I}) = \sum_{k=1}^{\lfloor \frac{n+1}{2} \rfloor} u_k + \int_1^{\lfloor \frac{n+3}{2} \rfloor} \frac{1}{2\,t-1} \,\mathrm{d}t.$
- c) Pour tout $n \in \mathbb{N}^*$, justifier l'encadrement : $0 \leqslant \ln \left(\frac{1}{n} \left(2 \left\lfloor \frac{n+3}{2} \right\rfloor 1 \right) \right) \leqslant \frac{2}{n}$
- d) Montrer que la série de terme général u_n est convergente.

On pose :
$$\delta = \sum_{n=1}^{+\infty} u_n$$
. Établir l'égalité : $\lim_{n \to +\infty} (h_n(\mathcal{I}) - \ln(\sqrt{n})) = \delta$.

- e) Pour tout $n \in \mathbb{N}^*$, montrer que l'on a : $\sum_{k=n+1}^{+\infty} u_k \leqslant \frac{1}{2n-1}$.
- f) Justifier pour tout entier $n \ge 3$, l'encadrement : $-\frac{1}{n} \le \delta (h_n(\mathcal{I}) \ln(\sqrt{n})) \le \frac{1}{n-2}$

1