Correction Kholles MP 08/11/2021:

Kholle A:

1)

- (a) Montrer que Z [i] est un sous anneau de (C, +, ×). Z [i] ⊂ C, 1 ∈ Z [i].
 ∀x, y ∈ Z [i], on peut écrire x = a + ib et y = a' + ib' avec a, b, a', b' ∈ Z.
 x y = (a a') + i(b b') avec a a', b b' ∈ Z donc x y ∈ Z [i].
 xy = (aa' bb') + i(ab' + a'b) avec aa' bb', ab' + a'b ∈ Z donc xy ∈ Z [i].
 Ainsi Z [i] est un sous-anneau de (C, +, ×).
 - (b) $N(zz') = |zz'|^2 = |z|^2 |z'|^2 = N(z)N(z')$ et $N(z) = a^2 + b^2 \in \mathbb{N}$ avec $z = a + \mathrm{i} b$ et $a, b \in \mathbb{Z}$.
 - (c) Si z est inversible d'inverse z' alors N(zz') = N(z)N(z') = 1. Or N(z), N(z') ∈ N donc N(z) = N(z') = 1. On en déduit z = 1, −1, i ou −i. La réciproque est immédiate.

2)

10 ∧ 13 = 1 avec la relation de Bézout

$$-9 \times 10 + 7 \times 13 = 1$$

Les nombres $x_1 = 7 \times 13 = 91$ et $x_2 = -9 \times 10 = -90$ sont solutions des systèmes

$$\begin{cases} x \equiv 1 \mod 10 \\ x \equiv 0 \mod 13 \end{cases} \text{ et } \begin{cases} x \equiv 0 \mod 10 \\ x \equiv 1 \mod 13 \end{cases}$$

On en déduit que

$$x = 2 \times 91 - 5 \times 90 = -268$$

est solution du système dont la solution générale est alors

$$x = -268 + 130k = 122 + 130\ell$$
 avec $\ell \in \mathbb{Z}$

3)

- (a) Pour p∈ P, pZ est un idéal premier. En effet on sait que pZ est un idéal et en vertu du lemme d'Euclide : xy ∈ pZ ⇒ x ∈ pZ ou y ∈ pZ.
- (b) Même principe
- (c) Supposons J ∩ K = I.
 Si J = I ok.

Sinon il existe $a \in J$ tel que $a \notin I$. Pour tout $b \in K$, $ab \in J \cap K$ d'où $ab \in I$ puis $b \in I$ car $a \notin I$. Ainsi $K \subset I$. D'autre part $I = J \cap K \subset K$ donc I = K.

(d) I = {0} est un idéal premier donc

$$xy = 0 \implies x = 0 \text{ ou } y = 0$$

Soit $x \in A$ tel que $x \neq 0$. x^2A est premier et $x^2 \in x^2A$ donc $x \in x^2A$. Ainsi il existe $y \in A$ tel que $x = x^2y$ et puisque $x \neq 0$, xy = 1. Ainsi A est un corps.

Notons

$$H = \left\{ x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1 \right\}$$

Pour $a\in H,\ a=x+y\sqrt{3}$ avec $x\in\mathbb{N},\ y\in\mathbb{Z}$ et $x^2-3y^2=1.$ On a donc $x=\sqrt{1+3y^2}>\sqrt{3}\,|y|$ puis a>0. Ainsi $H\subset\mathbb{R}_+^*.$

 $1 \in H$ car on peut écrire $1 = 1 + 0\sqrt{3}$ avec $1^2 - 3.0^2 = 1$.

Pour $a \in H$, on a avec des notations immédiates,

$$\frac{1}{a} = x - y\sqrt{3}$$

avec $x \in \mathbb{N}$, $-y \in \mathbb{Z}$ et $x^2 - 3(-y)^2 = 1$. Ainsi $1/a \in H$.

Pour $a, b \in H$ et avec des notations immédiates,

$$ab = xx' + 3yy' + (xy' + x'y)\sqrt{3}$$

avec $xx'+3yy'\in\mathbb{Z}, \, xy'+xy'\in\mathbb{Z}$ et $(xx'+3yy')^2-3(xy'+x'y)^2=1$. Enfin puisque $x>\sqrt{3}\,|y|$ et $x'>\sqrt{3}\,|y'|$, on a $xx'+3yy'\geq 0$ et finalement $ab\in H$.

b)

Supposons AH = H.

$$\forall a \in A, a = ae \in AH = H$$

donc $A \subset H$.

Supposons $A \subset H$. Pour $x \in AH$, x = ah avec $a \in A$, $h \in H$. Or $a, h \in H$ donc $x = ah \in H$.

Ainsi $AH \subset H$.

Inversement, pour $a \in A$ (il en existe car $A \neq \emptyset$) et pour tout $h \in H$, $h = a(a^{-1}h)$ avec $a^{-1}h \in H$ donc $h \in AH$. Ainsi $H \subset AH$ puis =.

Kholle B:

1)

- (a) $A \subset \mathbb{Q}$, $1 \in A$, $\forall x, y \in A$, $x y \in A$ et $xy \in A$: clair. Par suite A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- (b) $x \in A$ est inversible si, et seulement si, il existe $y \in A$ tel que xy = 1. $x = \frac{m}{n}, y = \frac{m'}{n'}$ avec n, n' impairs. $xy = 1 \implies mm' = nn'$ donc m est impair et la réciproque est immédiate. Ainsi

$$U(A) = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}^* \text{ impairs} \right\}$$

Dans le produit, on regroupe chaque facteur avec son inverse. Lorsque x est différent de son inverse, les deux facteurs correspondant dans le produit se simplifient. Une fois ces simplifications faites, il ne reste dans le produit que les facteurs égaux à leur inverse :

$$\prod_{x \in \mathbb{K} \setminus \{0\}} x = \prod_{\substack{x \in \mathbb{K} \setminus \{0\} \\ x = x^{-1}}} x$$

Cependant, la condition $x = x^{-1}$ équivaut à $x^2 = 1_K$ c'est-à-dire $(x - 1_K)(x + 1_K) = 0$. Un corps étant intègre, cette équation a pour seules solutions 1_K et −1_K. Que celles-ci soient ou non distinctes ², on obtient

$$\prod_{x \in \mathbb{K}^*} x = -1_{\mathbb{K}}$$

3)

(a) I est une partie non vide de A puisque 0_A en est élément. Soient $a \in A$ et

Si a = 0 alors $ax = 0 \in I$.

Pour $a \neq 0$, supposons $(ax)^{-1} \in A$.

On a alors $a^{-1}x^{-1} \in A$ et donc $x^{-1} = a(a^{-1}x^{-1}) \in A$ ce qui est exclu.

Nécessairement $(ax)^{-1} \notin A$ et donc $ax \in I$.

Soient $x, y \in I$. Montrons que $x + y \in I$.

Si x = 0, y = 0 ou x + y = 0, c'est immédiat. Sinon :

On a $(x + y)^{-1}(x + y) = 1$ donc

$$(x+y)^{-1}(1+x^{-1}y) = x^{-1}$$
 et $(x+y)^{-1}(1+xy^{-1}) = y^{-1}$ (*)

Par l'hypothèse de départ, l'un au moins des deux éléments $x^{-1}y$ ou

 $xy^{-1} = (x^{-1}y)^{-1}$ appartient à A.

Par opérations dans A à l'aide des relations (*), si $(x + y)^{-1} \in A$ alors x^{-1} ou y^{-1} appartient à A ce qui est exclu. Ainsi, $(x + y)^{-1} \notin A$ et donc $x + y \in I$.

Finalement, I est un idéal de A.

(b) Soit J un idéal de A distinct de A.

Pour tout $x \in J$, si $x^{-1} \in A$ alors par absorption $1 = xx^{-1} \in J$ et donc

J = A ce qui est exclu.

On en déduit que $x^{-1} \notin A$ et donc $x \in I$. Ainsi, $J \subset I$.

4)

Correction non réalisée ici mais on trouve : le neutre est l'ensemble vide et le symétrique de A est A. De plus, on pourra utiliser le fait que si f_A est la fonction caractéristique de l'ensemble A alors $f_A = f_B$ ssi A=B et calculer $f_{A\Delta B}$ (on montrera que $f_{AUB} = f_A + f_B - f_A f_B$ et $f_{A \cap B} = f_A f_B$): ainsi on pourra montrer que la loi est associative.

(a) Pour $i \neq j \in \{2, ..., n\}$,

$$(i,j)=(1,i)\circ(1,j)\circ(1,i)$$

Toute transposition appartient à $(t_2, t_3, ..., t_n)$ et puisque celles-ci engendrent S_n ,

$$S_n = \langle t_2, t_3, \dots, t_n \rangle$$

- (b) Si s = (i, j), u_s est la réflexion par rapport à l'hyperplan de vecteur normal $e_i e_j$.
- (c) Si s est le produit de p transpositions alors Ker(u_s − Id_E) contient l'intersection de p hyperplans (ceux correspondant aux transpositions comme décrit ci-dessus). Or, ici Ker(u_s − Id_E) = Vect(e₁ + ··· + e_n) et donc p ≥ n − 1.
- (d) n − 1 en conséquence de ce qui précède.

Kholle C:

1)

(a) Immédiatement $Z \subset A$ et $1_A \in Z$. Soient $x, y \in Z$. Pour tout $a \in A$

$$a(x-y) = ax - ay = xa - ya = (x-y)a$$

et

$$a(xy) = xay = xya$$

done $x - y \in A$ et $xy \in A$.

Ainsi Z est un sous-anneau de A.

(b) Soit x ∈ Z. Il existe y ∈ A tel que xyx = x. La difficulté est de voir que l'on peut se ramener au cas où y ∈ Z ... Pour cela considérons l'élément z = xy². On observe

$$xzx=x^3y^2=xyxyx=xyx=x$$

Il reste à montrer $z \in Z$. Posons $a \in A$. L'élément x^3 commute avec y^2ay^2 et donc

$$x^3y^2ay^2 = y^2ay^2x^3$$

ce qui donne

$$xay^2 = y^2ax$$

puis az = za. On peut alors que conclure que l'anneau Z est régulier au sens défini.

2)

Posons
$$j = f(\mathbf{i})$$
. On \mathbf{a} $j^2 = f(\mathbf{i})^2 = f(\mathbf{i}^2) = f(-1) = -f(1) = -1$ done $j = \pm \mathbf{i}$. Si $j = \mathbf{i}$ alors $\forall a, b \in \mathbb{R}$, $f(a + \mathbf{i}b) = f(a) + f(\mathbf{i})f(b) = a + \mathbf{i}b$ done $f = \mathrm{Id}_{\mathbb{C}}$. Si $j = -\mathbf{i}$ alors $\forall a, b \in \mathbb{R}$, $f(a + \mathbf{i}b) = f(a) + f(\mathbf{i})f(b) = a - \mathbf{i}b$ done $f: z \mapsto \bar{z}$.

 $N\subset A,\, 0_A\in N$ donc $N\neq\emptyset.$ Pour $x,y\in N,$ il existe $n,m\in\mathbb{N}^{\bullet}$ tel que $x^n=y^m=0_A.$

Par la formule du binôme,

$$(x+y)^{n+m-1} = \sum_{k=0}^{n+m-1} \binom{n+m-1}{k} x^k y^{n+m-1-k}$$

Pour $k \geq n$, $x^k = 0_A$ et pour $k \leq n-1$, $y^{n+m-1-k} = 0_A$. Dans les deux cas $x^k y^{n+m-1-k} = 0_A$ et donc $(x+y)^{n+m-1} = 0_A$. Par suite $x+y \in N$. Enfin pour $a \in A$ et $x \in N$, $ax \in N$ car $(ax)^n = a^n x^n$.

4)

- 1) Non corrigé ici, mais on a les idées suivantes :
 - a) Facile, il suffit de calculer avec 0 comme neutre, et -a comme symétrique de a.
 - b) Non car non stable par symétrique.
 - c) On fait une récurrence.
 - d) On laissera le lecteur vérifier les conditions pour que th soit l'isomorphisme voulu. On trouve donc que $th(nx) = x^{(n)} = \frac{P_n(x)}{Q_n(x)}$ et on trouve P_n et Q_n par la question c):

$$P_n = \frac{(1+X)^n - (1-X)^n}{2}$$
 et Q_n

5)

(a) $G_p \subset \mathbb{C}^*$, $1 \in G_p$, pour $z \in G_p$, il existe $k \in \mathbb{N}$ tel que $z^{p^k} = 1$ et alors $(1/z)^{p^k} = 1$ donc $1/z \in G_p$.

Si de plus $z' \in G_p,$ il existe $k' \in \mathbb{N}$ vérifiant $z'^{p^{k'}}$ et alors

$$(zz')^{p^{k+k'}} = \left(z^{p^k}\right)^{p^{k'}} \left(z'^{p^{k'}}\right)^{p^k} = 1 \text{ done } zz' \in G_p.$$

(b) Notons

$$U_{\mathbf{p}^k} = \left\{ z \in \mathbb{C} \mid z^{\mathbf{p}^k} = 1 \right\}$$

Soit H un sous-groupe de G_p différent de G_p .

S'il existe une infinité de $k \in \mathbb{N}$ vérifiant $U_{p^k} \subset H$ alors $H = G_p$ car G_p est la réunion croissante de U_{p^k} .

Ceci étant exclu, on peut introduire le plus grand $k \in \mathbb{N}$ vérifiant $U_{p^k} \subset H$. Pour $\ell > k$, tous les éléments de $U_{p^\ell} \setminus U_{p^k}$ engendrent au moins $U_{p^{k+1}}$, or $U_{p^{k+1}} \not\subset H$ donc $H \subset U_{p^k}$ puis $H = U_{p^k}$

H est donc un sous-groupe cyclique et ne peut être maximal pour l'inclusion car inclus dans le sous-groupe propre $U_{p^{k+1}}$.

(c) Si G_p pouvait être engendré par un système fini d'éléments, il existerait k ∈ N tel que ses éléments sont tous racines p^k-ième de l'unité et alors G_p ⊂ U_{pk} ce qui est absurde. Bonus:

1)

(a) Par la factorisation $a^2 - b^2 = (a - b)(a + b)$

$$a^{2^{n-2}} - 1 = (a^{2^{n-3}} + 1)(a^{2^{n-3}} - 1)$$

et en répétant l'opération

$$a^{2^{n-2}} - 1 = (a^{2^{n-3}} + 1)(a^{2^{n-4}} + 1)\dots(a^{2^0} + 1)(a^{2^0} - 1)$$

Il y a n-1 facteurs dans ce produit et ceux-ci sont tous pairs car a est impair. De plus, les deux derniers facteurs sont a+1 et a-1 et parmi ces deux figure un multiple de 4.

On en déduit que 2^n divise $a^{2^{n-2}} - 1$ et donc $a^{2^{n-2}} \equiv 1$ [2ⁿ].

(b) Par l'absurde supposons (Z/2ⁿZ)^{*} cyclique.

Les éléments de ce groupe sont les \bar{k} avec $2 \wedge k = 1$, ce sont donc les classes des entiers impairs. Il y en a exactement 2^{n-1} . Si \bar{a} est un générateur de $(\mathbb{Z}/2^n\mathbb{Z})^*$ alors a est un entier impair et \bar{a} est un élément d'ordre 2^{n-1} . Or le résultat précédent donne $\bar{a}^{2^{n-2}} = \bar{1}$ et donc l'ordre de a est inférieur à $2^{n-2} < 2^{n-1}$. C'est absurde.

2)

Une suite croissante (I_n) d'idéaux de \mathbb{Z} se détermine par une suite d'entiers naturels (a_n) vérifiant $I_n = a_n \mathbb{Z}$ et $a_{n+1} \mid a_n$. Si pour tout $n \in \mathbb{N}$, $I_n = \{0\}$ alors la suite (I_n) est stationnaire.

Sinon à partir d'un certain rang $I_n \neq \{0\}$ et la relation $a_{n+1} \mid a_n$ entraîne $a_{n+1} \leq a_n$. La suite d'entiers naturels (a_n) est décroissante et donc stationnaire. Il en est de même pour (I_n) .

Ce résultat se généralise à $\mathbb{K}[X]$ en travaillant avec une suite de polynômes unitaires (P_n) vérifiant $P_{n+1} \mid P_n$ ce qui permet d'affirmer en cas de non nullité $\deg P_{n+1} \leq \deg P_n$ puis $(\deg P_n)$ stationnaire, puis encore (P_n) stationnaire et enfin (I_n) stationnaire.