Classe: Seconde

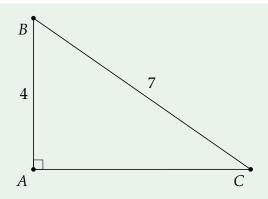
→ DS de Mathématiques (Sujet A) →

Le sujet est à rendre avec la copie.

Les exercices sont **indépendants**. L'usage de la calculatrice est **autorisé**. Il est rappelé que la qualité de la rédaction, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	2	3	Total
Points	5	4,5	8,5	18
Score				

- 1. Déterminer la longueur AC à 0,01 près.
- 2. Déterminer alors la mesure de tous les angles de ce triangle à 0,01 degré près.

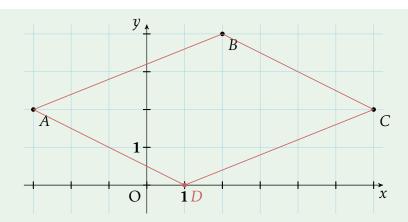


- 1. $AC^2 = BC^2 AB^2 = 33$. Donc $AC = \sqrt{33} \approx 5.74$.
- 2. On sait que $\widehat{BAC} = 90^{\circ}$. $\sin \widehat{ACB} = \frac{AB}{BC} = \frac{4}{7}$. Donc $\widehat{ACB} = \arcsin(\frac{4}{7}) \approx 34,85^{\circ}$.

La somme des angles d'un triangle valant 180° , on en déduit que $\widehat{ABC} \approx 55,15$.

- /1,5 1. Placer les points dans un repère orthonormé.
 - 2. Déterminer les coordonnées du point *D* tel que *ABCD* soit un parallélogramme. *Justifier*.

1.



2. ABCD est un parallélogramme si ses diagonales se coupent en leur milieu. Donc ABCD est un parallélogramme si les coordonnées du point D vérifient $\frac{x_A + x_C}{2} = \frac{x_B + x_D}{2}$ et $\frac{y_A + y_C}{2} = \frac{y_B + y_D}{2}$.

Après résolution des deux équations, on trouve $x_D = 1$ et $y_D = 0$.

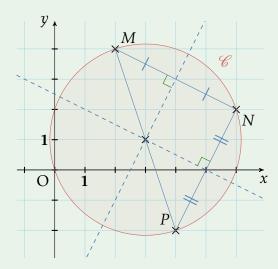
Donc pour que ABCD soit un parallélogramme, le point D doit avoir pour coordonnées (1;0).

On cherche à calculer l'aire du disque qui passe par ces 3 points.

- /1,5 1. Tracer le repère (O;I,J) et y placer les points M, N et P.
 - 71 2. Par construction, placer le centre du cercle $\mathscr C$ passant par M, N et P. Laisser les traits de construction apparents.
 - /1 3. Comment s'appelle ce cercle?
 - 4. Vérifier par le calcul que le centre du cercle a pour coordonnées (3;1).
 - 5. En déduire l'aire du disque passant par M, N et P.

1.

2. On trace les médiatrices d'au moins deux des côtés du triangle. Le centre du cerlce passant par M, N et P se trouve à l'intersection de ces médiatrices.



- 3. Ce cercle s'appelle le cercle circonscrit au triangle MNP.
- 4. Pour vérifier les coordonnées du centre par le calcul, on montre que les trois sommets en sont à égale distance.

Nommons *C* le centre du cerlce.

On montre que $MC = NC = PC = \sqrt{10}$.

5. Soit \mathcal{A} l'aire du disque passant par M,N et P.

 $A = \pi \times r^2 = \pi \times MC^2 = 10\pi \approx 31,42.$

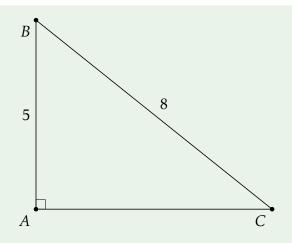
→ DS de Mathématiques (Sujet B) →

Le sujet est à rendre avec la copie.

Les exercices sont **indépendants**. L'usage de la calculatrice est **autorisé**. Il est rappelé que la qualité de la rédaction, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	2	3	Total
Points	5	4,5	8,5	18
Score				

- 1. Déterminer la longueur AC à 0,01 près.
- 2. Déterminer alors la mesure de tous les angles de ce triangle à 0,01 degré près.



- 1. $AC^2 = BC^2 AB^2 = 39$. Donc $AC = \sqrt{39} \approx 6,24$.
- 2. On sait que $\widehat{BAC} = 90^{\circ}$. $\sin \widehat{ACB} = \frac{AB}{BC} = \frac{5}{8}$. Donc $\widehat{ACB} = \arcsin(\frac{5}{8}) \approx 38,68^{\circ}$.

La somme des angles d'un triangle valant 180° , on en déduit que $\widehat{ABC} \approx 51,32$.

- 1. Placer les points dans un repère orthonormé.
- 2. Déterminer les coordonnées du point *D* tel que *ABCD* soit un parallélogramme. *Justifier*.

1.

/1,5



2. ABCD est un parallélogramme si ses diagonales se coupent en leur milieu. Donc ABCD est un parallélogramme si les coordonnées du point D vérifient $\frac{x_A + x_C}{2} = \frac{x_B + x_D}{2}$ et $\frac{y_A + y_C}{2} = \frac{y_B + y_D}{2}$.

Après résolution des deux équations, on trouve $x_D = 0$ et $y_D = 9$. Donc pour que ABCD soit un parallélogramme, le point D doit avoir pour coordonnées (0;9).

Exercice 3 ... 8,5 pts

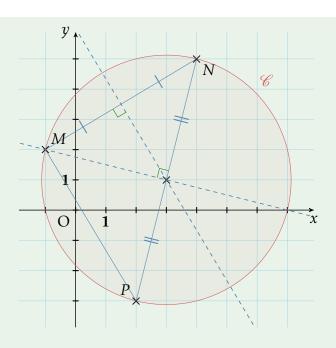
Soient M(-1;2),N(4;5) et P(2;-3) trois points dans un repère orthonormé (O;I,J).

- On cherche à calculer l'aire du disque qui passe par ces 3 points.

 1. Tracer le repère (O; I, J) et y placer les points M, N et P.
 - 2. Par construction, placer le centre du cercle & passant par M, N et P. Laisser les traits de construction apparents.
 - /1 3. Comment s'appelle ce cercle?
 - 4. Vérifier par le calcul que le centre du cercle a pour coordonnées (3;1).
 - /2 5. En déduire l'aire du disque passant par M, N et P.

1.

2. On trace les médiatrices d'au moins deux des côtés du triangle. Le centre du cerlce passant par M, N et P se trouve à l'intersection de ces médiatrices.



- 3. Ce cercle s'appelle le **cercle circonscrit** au triangle MNP.
- 4. Pour vérifier les coordonnées du centre par le calcul, on montre que les trois sommets en sont à égale distance.

Nommons *C* le centre du cerlce.

On montre que $MC = NC = PC = \sqrt{17}$.

5. Soit \mathcal{A} l'aire du disque passant par M, N et P. $\mathcal{A} = \pi \times r^2 = \pi \times MC^2 = \boxed{17\pi} \approx 53,41.$