Classe: Terminale

→ DS de Mathématiques (Sujet A) →

Le sujet est à rendre avec la copie.

Les exercices sont indépendants. L'usage de la calculatrice est autorisé.

Il est rappelé que la qualité de la rédaction, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	Total		
Points	10	10		
Score				

- 1. Dresser le tableau de variations de f. On veillera à y faire apparaître les images ainsi que les limites, qui sont à calculer.
- /4 2. Justifier que l'équation f(x) = 0 admet une unique solution α sur \mathbb{R} .
- /2 3. À l'aide de la calculatrice, déterminer une valeur approchée à 10^{-2} près de α .
 - 1. $f'(x) = 3x^2 3$.

$$\Delta = 0^2 - 4 \times 3 \times (-3) = 36.$$

 $\Delta > 0$, donc f'(x) admet deux racines réelles.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-0 - 6}{2 \times 3} = -1.$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-0 + 6}{2 \times 3} = 1.$$

Le trinôme est du signe de *a*, ici 3, sauf entre les racines.

On en déduit le tableau suivant :

х	$-\infty$		-1		1		+∞
f'(x)		+	0	_	0	+	
f(x)	-∞		, ⁸ \		* 4		+∞

On calcule
$$f(-1) = 8$$
 et $f(1) = 4$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty.$$

2. f est continue sur \mathbb{R} en tant que polynôme.

D'après le tableau précédent, f admet pour minimum 4 sur $[-1;+\infty[$.

Donc l'équation f(x) = 0 n'admet aucune solution sur $[-1; +\infty[$.

Par ailleurs, f est continue et strictement croissante sur $]-\infty;-1]$.

De plus, $\lim_{x \to 0} f(x) = -\infty$, et f(-1) = 8 > 0.

Donc d'après un corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution sur $]-\infty;-1]$.

On déduit de ce qui précède que f(x) = 0 admet une unique solution sur \mathbb{R} .

3. On trouve $\alpha \approx -2.36$.

Classe: Terminale

→ DS de Mathématiques (Sujet B) →

Le sujet est à rendre avec la copie.

Les exercices sont indépendants. L'usage de la calculatrice est autorisé.

Il est rappelé que la qualité de la rédaction, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	Total		
Points	10	10		
Score				

- 1. Dresser le tableau de variations de f. On veillera à y faire apparaître les images ainsi que les limites, qui sont à calculer.
- /4 2. Justifier que l'équation f(x) = 0 admet une unique solution α sur \mathbb{R} .
- /2 3. À l'aide de la calculatrice, déterminer une valeur approchée à 10^{-2} près de α .
 - 1. $f'(x) = 3x^2 12$.

$$\Delta = 0^2 - 4 \times 3 \times (-12) = 144.$$

 $\Delta > 0$, donc f'(x) admet deux racines réelles.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-0 - 12}{2 \times 3} = -2.$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-0 + 12}{2 \times 3} = 2.$$

Le trinôme est du signe de *a*, ici 3, sauf entre les racines.

On en déduit le tableau suivant :

x	$-\infty$		-2		2		+∞
f'(x)		+	0	_	0	+	
f(x)	-∞		36		* 4		+∞

On calcule
$$f(-2) = 36$$
 et $f(2) = 4$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty.$$

2. f est continue sur \mathbb{R} en tant que polynôme.

D'après le tableau précédent, f admet pour minimum 4 sur $[-2;+\infty[$.

Donc l'équation f(x) = 0 n'admet aucune solution sur $[-2; +\infty[$.

Par ailleurs, f est continue et strictement croissante sur $]-\infty;-2]$.

De plus, $\lim_{x \to \infty} f(x) = -\infty$, et f(-2) = 36 > 0.

Donc d'après un corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution sur $]-\infty;-2]$.

On déduit de ce qui précède que f(x) = 0 admet une unique solution sur \mathbb{R} .

3. On trouve $\alpha \approx -4.11$.