Prénom : . . . Nom : . . .

Classe: Terminale

→ DS de Mathématiques (Sujet A) →

Le sujet est à rendre avec la copie.

Les exercices sont **indépendants**. L'usage de la calculatrice est **autorisé**. Il est rappelé que la qualité de la **rédaction**, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	Total
Points	16	16
Score		

On considère la fonction f définie sur $[0;+\infty[$ par :

$$f(x) = \ln\left(\frac{3x+1}{x+1}\right)$$

On admet que f est dérivable sur $[0;+\infty[$ et on note f' sa fonction dérivée.

Partie A

- /2 1. Déterminer $\lim_{x \to +\infty} f(x)$ et en donner une interprétation graphique.
- /2 2. (a) Démontrer que pour tout réel x positif ou nul, $f'(x) = \frac{2}{(x+1)(3x+1)}$.
- /2 (b) En déduire que la fonction f est strictement croissante sur $[0;+\infty[$.

Partie B

/3 /2

/2

Soit (u_n) la suite définie par $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. Démontrer par récurrence que pour tout entier naturel n, $\frac{1}{2} \le u_{n+1} \le u_n$.
- 2. Démontrer que la suite (u_n) converge vers une limite strictement positive.

Partie C

On note l la limite de la suite (u_n) .

On admet que f(l) = l.

L'objectif de cette partie est de déterminer une valeur approchée de l.

On introduit pour cela la fonction g définie sur $[0; +\infty[$ par g(x) = f(x) - x.

On donne ci-dessous le tableau de variations de la fonction g sur $[0; +\infty[$, où $x_0 = \frac{-2+\sqrt{7}}{3} \approx 0,215$ et $g(x_0) \approx 0,088$, en arondissant à 10^{-3} près.

х	0	x_0	+∞
g(x)	0	$g(x_0)$	-∞

1. Démontrer que l'équation g(x) = 0 admet une unique solution strictement positive. On la note α .

71 2. (a) Recopier et compléter l'algorithme ci-dessous afin que la dernière valeur prise par la variable x soit une valeur approchée de α par excès à 0,01 près.

```
x = 0
g = 0
while ...:
x = x + 0.01
g = ...
```

- (b) Donner alors la dernière valeur prise par la variable x lors de l'exécution de l'algorithme.
- 3. En déduire une valeur approchée à 0,01 près de la limite l de la suite (u_n) .

Prénom : . . . Nom : . . .

Classe: Terminale

→ DS de Mathématiques (Sujet B) →

Le sujet est à rendre avec la copie.

Les exercices sont **indépendants**. L'usage de la calculatrice est **autorisé**. Il est rappelé que la qualité de la **rédaction**, la **clarté** et la **précision** des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice	1	Total	
Points	16	16	
Score			

On considère la fonction f définie sur $[0;+\infty[$ par :

$$f(x) = \ln\left(\frac{3x+1}{x+1}\right)$$

On admet que f est dérivable sur $[0; +\infty[$ et on note f' sa fonction dérivée.

Partie A

- /2 1. Déterminer $\lim_{x \to +\infty} f(x)$ et en donner une interprétation graphique.
- /2 2. (a) Démontrer que pour tout réel x positif ou nul, $f'(x) = \frac{2}{(x+1)(3x+1)}$.
- /2 (b) En déduire que la fonction f est strictement croissante sur $[0; +\infty[$.

Partie B

/3 /2

/2

Soit (u_n) la suite définie par $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. Démontrer par récurrence que pour tout entier naturel n, $\frac{1}{2} \le u_{n+1} \le u_n$.
- 2. Démontrer que la suite (u_n) converge vers une limite strictement positive.

Partie C

On note l la limite de la suite (u_n) .

On admet que f(l) = l.

L'objectif de cette partie est de déterminer une valeur approchée de l.

On introduit pour cela la fonction g définie sur $[0; +\infty[$ par g(x) = f(x) - x.

On donne ci-dessous le tableau de variations de la fonction g sur $[0; +\infty[$, où $x_0 = \frac{-2+\sqrt{7}}{3} \approx 0,215$ et $g(x_0) \approx 0,088$, en arondissant à 10^{-3} près.

х	0	x_0	+∞
g(x)	0	$g(x_0)$	-∞

1. Démontrer que l'équation g(x) = 0 admet une unique solution strictement positive. On la note α .

71 2. (a) Recopier et compléter l'algorithme ci-dessous afin que la dernière valeur prise par la variable x soit une valeur approchée de α par excès à 0,01 près.

```
x = 0
g = 0
while ...:
x = x + 0.01
g = ...
```

- (b) Donner alors la dernière valeur prise par la variable x lors de l'exécution de l'algorithme.
- 3. En déduire une valeur approchée à 0,01 près de la limite l de la suite (u_n) .